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Shock waves (SW) which converge to their axis or center of symmetry are a special object 
of investigation in the problem of obtaining a dense, high-temperature plasma for power 
plants and in shock tubes which operate on the principle of the accumulation of energy stored 
in an electrical or chemical source. The subject is also important in other scientific 
problems. Since similarity solutions for convergent SW's [1-5] are applicable only within a 
certain region of the front, the main method of theoretically studying the problem has been 
to combine qualitative physical analysis with numerical calculation in a complete formulation 
which accounts for the most important physical processes [6]. 

In a similarity solution - representing the asymptote in the neighborhood of the axis or 
the center of symmetry - the temperature, pressure, and velocity increase without limit. 
Here, as indicated in [3], dissipative effects (viscosity, heat conduction) do not always 
lead to a limitation on the concentration of energy density. At the same time, finite values 
of these quantities are always obtained in numerical calculations performed by finite-dif- 
ference methods. This follows, for example, from [6-11]. The authors of these studies 
numerically modeled several problems on convergent SW's. In particular, the authors of [6] 
stated the necessary conditions of applicability of the finite-difference approach for such 
problems. These conditions require that the numerical solution coincide with the similarity 
solution at moments of time before and after focusing and that it subsequently merge with the 
asymptote for a point explosion. Here, we use the example of convergent SW's in an ideal gas 
with the adiabatic exponent ~ = 7/5 and 5/3 to show that numerical solutions found by the 
Lagrangian methods with artificial viscosity converge to the similarity solution [12]. 
Comparison of results (each of which satisfies the conditions in [6]) obtained on different 
meshes with a monotonic reduction in the size of the calculated region of the center of 
symmetry makes it possible to evaluate the minimum size of this region sufficient to achieve 
the prescribed accuracy in calculating the flow field corresponding to convergence and 
reflection of the SW's. We also present results of calculations of the focusing of SW's in 
metal spheres, which can be described by the model of an ideal elastoplastic isotropic medium 
[13] and Tillotson's equation of state [14]. Here, we examine the parameter changes in the 
substance in the focusing region for different materials (AI, Fe, W) and shock-wave intensities. 

i. Calculations of convergent SW's in a gaseous medium are usually confined to examina- 
tion of a certain neighborhood of the center or axis of symmetry. The size of this region, 
on the order of the thickness of the from, is determined by dissipative processes (viscosity, 
heat conduction, radiation) [6-11]. However, the SW front in an ideal gas has no thickness, 
and the Landau-Stanyukovich-Guderley similarity solution [i, 2] predicts an unlimited ac- 
cumulation of energy density~ i.e. an infinite increase in temperature, pressure, and mass 
velocity (T~-~p~-~R-~(h-~), UNR-(h~I) ) on the front of SW's converging to the center of sym- 
metry (R = 0). In connection with this, it becomes necessary to consider the behavior of the 
numerical solution and its agreement with the similarity solution as the SW'S come closer to 
converging at and being reflected from the center of symmetry. 

Let a spherical layer of heated gas with an initial pressure P/P0 = 480 and a density 
P/P0 = 8 begin at t > 0 to expand into a stationary medium with the parameters P0 = 27, P0 = 
2.7. The stationary medium is filling a cavity of the radius R 0 = 30. Here, the gasdynamic 
quantities are presented in dimensionless units. Using the relations u. = R./t., p./p. = u~ 
we can obtain the true values of the sought quantities by selecting the characteristic dimen- 
sions of length and time. 

The decay of the discontinuity and the convergence of the resulting SW toward the center 
of symmetry were calculated on an irregular mass grid. The grid was constructed from the 
central cell, with a linear dimension ARt, and mass P0(ARl) 3, to the boundary of the cavity 
R 0 with the progression I.i. For the two variants of the problem, with 7 = 7/5 (a) and 5/3 
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Fig. 1 

(b), Fig. 1 shows the dependence of the pressure on the front on the distance to the center 
for the convergent (lower points) and reflected (upper points) SW's for the similarity solu- 

tion k = 1.395 (a) and 1.452 (b) (solid lines) and the numerical solution with different 
values of the initial dimension AR~ I-3) = 3, i, 0.3 and different numbers of cells on the 

interval 0 ~ R ~ R 0 50, 70, and i00 (points i-3). The dashed lines show the non-self-similar 
change in pressure in the convergent and reflected flows. The number of cells in the heated 
region was constant for all variants (50). It can be seen from Fig. I that satisfactory 
agreement of the numerical and similarity solutions begins with distances R = 0.5R 0 and is 
maintained to a certain neighborhood of the center R ~ _, , dependent on the mesh of the 

computational grid. At the moment of focusing t = to, the maximum pressure in the central 
cell is a finite quantity for each variant. It increases as the solution approaches the 

center in accordance with the law pn~(ARI) -2(k-I), where AR I is the current size of the com- 
pressed first cell at t = t o . Beginning with a certain distance R (4) (Fig. la), the front of 

the reflected SW merges with the asymptote associated with a Sedov-Taylor strong explosion. 

Figure 2 shows the calculated density profiles over 50 cells during convergence and 

reflection of SWes at the moments of time (a--? ~ 7/5) t =- J4; J6; 17,5; 18,4; 19,2; 20; 20~7; 
22,5; 25; 27 p~sec, (b  - - ?  = 5/3) t = i5; t6; iT; f7,6; 18; i8,6; J9 , t ;  20; 22; 24 # s e c  - l i n e s  1 - 1 0 ,  
respectively. The density of the gas, equal on the SW front to PE == P0(T i J)/(~- J) at the 
moment of collapse t = t c reaches the limiting value p~ ~ 7.34 P0 (? = 5/3)and 21,7 P0(~ = 7/5),in the 
central cell, while after SW reflection it reaches the maximum value Pm ~ 3J,3 po (? == 5/3) and 
134.9 P0 (? =7.5). The calculated values of P2 and Pm for ~ = 7/5 are closer to the values 
reported in [4] than in [5]. 

The results indicate satisfactory agreement between the numerical solution and the 
similarity solution. The conditions in [6] are satisfied for all of the computational grids, 
with 50, 70, and I00 cells. The SW converges to the center of symmetry. The conditions for 
the divergent flow after reflection are also satisfied. However, these results do not allow 
us to properly' choose among the theoretical variants considered, the latter differing both in 
the distribution of the gasdynamic quantities over the radius and in the computing time. 

Let us examine the theoretical dependences of the total energy E = pe2/2~-p(?--l) on the 

mass of the gas for ? = 7/5 (a) and ? = 5/3 (b) that were obtained on grids of 50, 70, and 
i00 cells (points 1-3) at the moment of time t = t c (Fig. 3). It is evident that the theoret- 
ical curves converge to a certain limiting profile. In the present case, this profile nearly 
coincides with that obtained on grids of I00 and 130 cells and with the similarity curve 
depicting the well-known energy relation in the similarity region Rf ~ R < R a behind the 
front E - R 5-zk [4, 5]. Similar convergence is seen for the pressure, density, and velocity 
curves constructed as a function of the mass of the gas pR 3 or the coordinate R. 

Detailed analysis of the agreement between the numerical solutions and the similarity 
solution at t < to, t ~ t c suggests that there is a region of the center (or axis) of symmetry 
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R, such that, for any initial conditions R 0 >> R,, the solution of the problem of the conver- 
gence and divergence of SW's in the region R > R, does not change. Despite the fact that the 
energy density here increases without limit, the total energy in the region R < R, is so 
small that, within a certain specified range of accuracy, the flow over the entire remainder 
of the region is independent of it. The value of R, ~ nAR~ - where AR~ is the size the 
central cell at t = t e and n is the number of cells over which the SW front is approximated 
by a specific difference scheme - can be determined by calculation if the accuracy of the 
convergence for the gasdynamic quantities is specified. 

Thus, for an ideal gas, the numerical approach not only makes it possible to correctly 
calculate the convergence of an SW to a region of the center of symmetry which is as small as 
desired, it also evidently permits determination of a certain finite size of this region for 
which the accuracy of the calculations are not improved. In particular, for the variants 
examined here, the results obtained with AB~ ) = 0.3 and 130 cells nearly coincide every- 
where - except for the focusing region R < R, - with the data obtained with AR~ ) = 0.3 and i00 

cells. Then ARreARS). 

2. The study of convergent SW's in condensed media is of analytical interest, particular- 
ly in connection with the search for information on the thermodynamic properties of substances 
at high pressures and temperatures [15, 16], The complexity of mathematically describing the 
focusing of an SW in a nonideal medium allows investigators to obtain a similarity solution 
only in isolated cases, such as with the grfineisen equation of state [16]. A more realistic 
formulation of the problem requires the use of numerical methods. 

In accordance with [13], the system of equations in Lagrangian coordinates for the case 
of spherical symmetry (the point above the quantities denoting a time derivative along the 
path of a particle of the medium) is written in the form 

V:VOI \M / OM 8 - - v ( s l e  ~ + 2s2ez)+ ( p + q ) p = O ,  

2~=--(p+q)+s~,  2o=--(p+q)+s~.  

Here, ~ and Z 0 are the radial and tangential stresses; M is the mass coordinate; e is the 
specific internal energy; v = I/p is the specific volume; q is pseudoviscosity; e I, e z, and 
e~ are components of the strain vector; sl, s2, s 3 are components of the stress deviator. 
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The following relations were used to calculate the elastoplastic properties: 

s I=2~ I--~ , s~=2~ 2-- , s3=2~ ~-- , 

0U U 
e l  = a---~, e2 = ~ - ,  e s = e 2. 

The components of the stress deviator s in the region of plastic flow of the medium were 

2 . 2 -2  
corrected under the von Mises condition s~ + s 2 + s~ ~TY0' where the yield point Y0 and the 

shear modulus # were assumed to be equal to: Y0 = 0.3, 0.6, 3 GPa, ~ = 24.8, 80, 154 GPa for 
AI, Fe, and W, respectively. 

Let us examine the change in the parameters in the focusing region for SW's of different 
intensities leaving a layer with the thickness AR and the total energy E 0 on the surface of 
spheres of different materials (AI, Fe, W) with the radius R 0 = 0.2125 cm. 

At AR/R 0 ~ A s ~ 0.i (E 0 = 0.Ii kJ) for AI, As ~ 0.2 (0.25 kJ) for Fe, and A s ~ 0.5 (0.76 
kJ) for W, a convergent SW in the metal remains weak due to loss of energy during completion 
of work on elastopiastic deformation of the sphere. This is expressed in the finiteness of 
the increase in energy density and other gasdynamic quantities at the center of symmetry. 
For example, for Fe at Po = 7.83 g/cm 3, the maximum energy density and maximum specific 
internal energy converge to constant values Pm/Po = 1.50, 1.55, 1.56; c m = 3.49, 4.62, 4.69 
kJ/g with an increase in the number of grid cells to 30, 50, and 70, respectively. 

At A > As for all of the test materials, focusing of an SW leads to an increase in 
energy density in the neighborhood of the center to values greater than the energy of vapori- 
zation of the substance. Focusing also leads to entrainment of mass from the center after 
reflection of the SW, i.e. to the formation of a cavity of a certain size. The authors of 
[17] experimentally observed and numerically modeled the formation of a closed cavity at the 
centers of metal spheres symmetrically exposed to an electron beam~ In our case, as calcula- 

tions showed, there are narrow ranges of loading A ~A~0A--0.2(AI), 0.2--0.3 (Fe), 0.5-- 0.7 
(W), for which a cavity of finite dimensions is also formed inside the sphere. The dynamics 
of its formation in iron at A = 0.3 is evident from Fig. 4, which shows profiles of pressure 
p (TPa) and relative density P/Po over the radius at the moments of time t = 0.13; 0.16;0~2;0.25; 

0.32: 0.4; 0.44; 0.5; 053;  0 .63; i ;  1.59; 2.5~; 3.98; 6.3 >sec  - l i n e s  1 -15 ,  r e s p e c t i v e l y .  I t  can  be 
seen that growth of the cavity ceases at t ~ 6.3 #see. 

With an increase in A and E0, the role of energy dissipation in elastoplastic flow 
begins to decrease and the SW focusing process changes to a regime similar to compression in 
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TABLE I 

0,1 
0,31 
t,0 
3,0 

10 

O,ii 
0,43 
2,25 

20,2 
426 

Prn' TPa 

number of cells 
3o 

0,163 
0,449 
3,47 
4,09 

22,3 

5O 7O 

0,209 0,217 
0,875 i,128 
5,89 29,4 

18,8 89,2 
96,6 851,2 

a gaseous medium with an infinite increase in energy density at the center. This may include 
a change in the ratio of energy expended on elastoplastic deformation of an iron sphere to 
the work of pressure in the SW v(sldel- I- 2s2de2)/pdv ~.i0; i; 0.1; 0.0~ at A = 0.i, 0.3, i, I0, as 
well as a divergence of the values of maximum pressure Pm at the center of the sphere. Table 
1 shows values of Pm as a function of the intensity of the external effects A and E 0. 

The calculated results examined above demonstrate the reliability of numerical solutions 
of the problem of convergent SW's, as is confirmed by the agreement with the similarity 
solution (gaseous medium) and the agreement between theoretical and experimental data (effect 
of formation of a closed cavity in an elastoplastic medium). As regards the problem of the 
accumulation of energy density in a convergent SM, it can be concluded either that an infinite 
increase in the quantities occurs in a certain neighborhood of the focal point and has no 
effect on motion outside it or is limited by the corresponding actual physical mechanism of 
dissipation (as was indicated in [18]) if this mechanism plays a significant role in the 
energy balance of the cumulative flow. 
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STABILITY OF SYMMETRICAL COMPRESSION OF A CYLINDRICAL 

LINER MODELING A SYSTEM OF WIRES 

A. A. Samokhin UDC 533.952 

Low-inductance multiwire devices ("arrays") [i], used as the load in pin-diodes, have 
made it possible to obtain plasmas characterized by high velocities (-107 cm/sec) and extreme 
parameters. This had in turn made such plasmas a promising tool in studies of powerful 
sources of electromagnetic radiation and dense-plasma generators [2]. The multiwire devices 
are also of interest for modeling the dynamics of the compression of cylindrical liners and 
z-pinches. The study of instabilities which disturb the synchronicity of the convergence of 
conductors at the center of the system is an important goal [3]. Here, we analyze the stabil- 
ity of the symmetrical collapse of an "array" with allowance for the mutual inductive effect 
of the currents and the finite ohmic resistance of the conductors. By using an asymptotic 
solution, the results are extended to the case of a solid liner. 

Formulation of the Problem. We will examine a system of N rectilinear conductors (wires) 
with current. The conductors are positioned between two plane electrodes and close a circuit 
with the voltage source E, external inductance Lext, and external resistance ~ext. It is 
assumed that the wires remain parallel to the z axis during motion and have transverse 
dimensions much smaller than the characteristic spacing. In this case, the motion of the 
liner reduces to the motion of point masses in the plane (x, y). We will use a Lagrangian 
formulation of the problem [4] to obtain the corresponding equations of motion with allowance 
for the changing inductance of the system. Each conductor is described by three generalized 
coordinates. Two of these coordinates (x, y) describe the position of the conductor, while 
the third coordinate Q gives the magnitude of the transmitted charge and corresponds to an 
"electrical" degree of freedom. The Lagrangian of the system, comprised of the kinetic 
energy of the wires, the energy of the magnetic field, and the energy of the external source, 
has the form 

L ~  = 21c -2 in (Boo / lX~  - -  X~I ) ,  cz =/= ~, 

L ~  = 2lc  -2 In (Ro~/r~),  
(2) 
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